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ABSTRACT

The view factors which are used in diffuse-gray radiation enclosure calculations are often

computed by approximate numerical integrations. These approximately calculated view factors will

usually not satisfy the important physical constraints of reciprocity and closure. In this paper several
view-factor rectification algorithms are reviewed and a rectification algorithm based on a least-squares

numerical filtering scheme is proposed with both weighted and unweighted classes. A Monte-Carlo

investigation is undertaken to study the propagation of view-factor and surface-area uncertainties into

the heat transfer results of the diffuse-gray enclosure calculations. It is found that the weighted least-

squares algorithm is vastly superior to the other rectification schemes for the reduction of the heat-

flux sensitivities to view-factor uncertainties. In a sample problem, which has proven to be very

sensitive to uncertainties in view factor, the heat transfer calculations with weighted least-squares
rectified view factors are very good with an original view-factor matrix computed to only one-digit

accuracy. All of the algorithms had roughly equivalent effects on the reduction in sensitivity to area

uncertainty in this case study.

INTRODUCTION

It is general knowledge in the radiation heat transfer literature that the view factors in diffuse-

gray radiation enclosure calculations should be computed in such a way that they satisfy the physical

constraints of reciprocity and closure. For systems with a large number of surfaces, the only

practical way to compute the view factors is by approximate numerical integrations. Monte-Carlo
integration is a popular technique which is robust and has the added advantage of providing an

estimate of the uncertainty in each calculation. These approximately computed view factors will only
in the rarest of coincidences satisfy the reciprocity and closure constraints, and artificial means of

enforcement must be adopted.

Most heat transfer textbooks adopt a naive enforcement. Only the view factors above the

diagonal in the view-factor matrix are computed. The view factors below the diagonal are computed

using reciprocity relationships, and the view factors along the diagonal are computed using closure.
This technique is naive because it allows the view factors along the diagonal to be negative. Negative

view factors are of course blatant physical impossibilities. Tsuyuki [1] presents a refined form of the
naive enforcement which avoids negative view factors, van Leersum [2] presents an iterative

approach which enforces closure and reciprocity on an approximate set of view factors and avoids

negative instances.

It is often stated in the radiation heat transfer literature (Brewster [3] for example) that reciproci-
ty and closure are required to avoid ill-conditioned matrixes in the linear equation set that results from

the diffuse-gray enclosure analysis. Taylor et al. [4, 5] have demonstrated that diffuse-gray radiation
enclosure problems can be very sensitive to errors in the view factors even when the coefficient

matrixes are very well-conditioned with condition numbers of order 2 and 3. In their work, they

found that the simultaneous enforcement of reciprocity and closure using the naive algorithm
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described above will greatly reduce this sensitivity. Also, Taylor et al. demonstrated that enforce-

ment of closure and reciprocity reduced the sensitivity of the heat-flux results to uncertainties in the
surface areas.

This paper extends the previous work of Taylor et al. by considering more advanced reciprocity

and closure enforcement algorithms and comparing the propagation of the view-factor errors and

surface-area errors into computed heat-flux results of the diffuse-gray enclosure analysis for the
different methods.

Four view-factor enclosure algorithms are discussed and compared

1) No enforcement--all view factors independently computed.

2) Naive enforcement.

3) van Leersum's enforcement.

4) Optimal enforcement.

The optimal enforcement algorithm uses a least-squares optimization which finds the minimum root-

sum-square charge in the view factors which will simultaneously enforce reciprocity and closure.
Nonnegativity conditions can also be included in the optimization algorithms.

The technique used for the comparison is a Monte-Carlo uncertainty analysis of a sample

problem which has proven to be hypersensitive to errors in the view factors when reciprocity and
closure are not enforced. The results are the distributions in computed surface heat fluxes for

assumed uncertainty distributions of the original unrectified view factors and for assumed uncertainty
distributions in surface areas.

DIFFUSE-GRAY ENCLOSURE FORMULATION

Radiation exchange between finite diffuse-gray areas which form an enclosure is discussed in

almost all general heat transfer textbooks. Excellent detailed discussions can be found in any thermal
radiation heat transfer textbook (Brewster [3] and Siegel and Howell [6], for example). The basic

restrictions are that each surface have uniform temperature, uniform radiative properties which are

diffuse and gray, and uniform radiosity. Boundary conditions for the k-th surface are expressed by

specifying either the surface heat flux, qk, or the surface temperature, tk. Mixed boundary conditions

cause no problem. If all of the surfaces with specified heat flux are considered first as surfaces 1

through M and the surfaces with specified temperatures numbered M + 1 through N, the following
set of linear equations can be obtained for the radiosity values [4,5]

[i- (i- l,:' q.=b (D

where D a is a diagonal matrix with areas as elements, F is the view factor matrix, D, u is a diagonal

matrix with zeros for elements in rows 1 through M and ek in rows k = M + 1 to N, b is a vector

whose first M elements are qk (k = 1,2,-..,M) and whose last N-M elements are %or; (k =

M+ I,...,N), and qo is the vector of radiosities.

Equation (1) is solved for the radiosities. If the result r is taken to be the vector whose first M

elements are %ot; (k = 1,2,...,M) and whose last N-M elements are qk (k = M+ 1,-.-,N), the final

equation is

(2)
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where D_ u is the complement of D_ and has ek for the first M elements and zeros for the last N-M

elements.

Usually at this stage of the development, the view-factor reciprocity relationship

FrD. = Da F (3)

is substituted into equations (1) and (2) to simplify the formulas. However, in this investigation, we

are interested in cases where reciprocity is not strictly enforced. In that case, it is more appropriate

to work with equations (1) and (2).

VIEW-FACTOR RECTIFICATION

Three view-factor rectification schemes are considered: 1) Naive, 2) Leersum's, and 3) least-

squares optimum. For the least-squares optimum three subsets are considered: 1) unweighted
without nonnegativity, 2) unweighted with nonnegativity, and 3) weighed with nonnegativity. Each of

these procedures is discussed below.

Naive Rectification

For the naive rectification, the view factors above the main diagonal in the view-factor matrix,

F, are retained and all others are discarded. The upper-triangular matrix containing these remaining
view factors is designated as U and its transpose as UT. Equation (3) can then be used to compute

the missing view factors below the diagonal. If the lower-triangular matrix containing the view

factors below the main diagonal calculated by reciprocity is designated LN, equation (3) can be
written as

L_, = D, -t U rD, (4)

The rectified view-factor matrix excluding the diagonal is obtained by combining the lower- and

upper-triangular matrixes

FN= LN + U (5)

Next the diagonal elements are computed using the closure relation

N

j=l
j*i

(6)

No attempt is made to ensure nonnegative view factors. The physically impossible negative view

factors are naively accepted.

Leersum's Rectification

van Leersum (1989) has published an iterative scheme which can be considered a refinement of
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the naive rectification. His method spreads the closure adjustments over all of the view factors and

assures nonnegative view factors. His algorithm is given below.

1) For each row in the F, compute a correction factor based on closure

4:1-E m
k-I

where m is the number of nonzero view factors in row i.

2) For each nonzero view factor in row i, apply the correction

: +a,, k : 1, ...,Iv

(7)

(8)

3)

If any fLii < 0, decrease m by the number of negative values and recalculate di bypassing the

view factbrs which made the previous fLij negative. Repeat this procedure until no negative
view factors are obtained.

Enforce reciprocity by computing values for column i

aift._
/,_- ,k=l,...,N

a k

4) Repeat this process in turn for each row.

5) Since the enforcement of reciprocity in 3) disturbs the closure forced in 1) and 2), repeat the

entire process iteratively until the values of di are arbitrarily small.
The step-by-step enforcement of reciprocity in 3) over wrights all of the original view factors

below the main diagonal; therefore, Leersum's procedure only considers the diagonal and upper

triangular elements in the original view-factor matrix. Also, it is not clear why zero-valued view
factors are considered to be exact and are not allowed to be modified.

Least-Squares Optimum

The least-squares optimization problem can be posed as the quadratic minimization of

N N

y =E E w,j¢o -
i-I j-I

subject to the closure and reciprocity equality constraints where the fii's are the original approximate-

ly determined view factors, foij's are the corrected view factors, and _vij's are the weights used when
the view factors have unequal uncertainty. The closure and reciprocity constraints are

N

(9)

(10)

foij = 1, i= l, ..., N (11)
j-1

ajfaj i - aifoO = 0 i = 1, N - 1, j = i +I,N (12)
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If nonnegativity is desired, the inequality constraints can be applied

fo¢>O i = 1,...,N,j= 1,...,N (13)

This problem can be readily solved using any number of nonlinear-programming techniques.
However, considerable insight can be gained and a computational formula can be derived if the

problem is viewed from a geometric standpoint. First, the view factors are grouped into a column

vector instead of a matrix. The view-factor matrix is stacked in row-major form; for example, the 2
× 2 view-factor matrix becomes

111 I

I A2 .112 1

F= -f=
If.,f..J ,%,i

Closure and reciprocity are enforced by applying the equality
form a set of linear equations

R'f=¢

4" !

J221

constraints (equations 11 and 12)to

(14)

(15)

The 2 × 2 system would yield, for example

i °0 1

a I -a 2

(16)

Equation (15) has N(N - 1)/2 degrees of freedom. The Naive rectification is obtained by specifying

the N(N - 1)/2 view factors above the main diagonal and computing the remainder from equation
(15). However, it is more desirable to use all of the N 2 view factors.

The solutions of equation (15) can be factored into two orthogonal subspaces--the rowspace and
the nullspace. The rowspace component of the solution is computed using the expression (Strang [7])

f,.,,= R  (RR c (17)

This vector is the particular solution of equation (15) which has the least norm. It is a unique and

necessary component of all solutions of equation (15). The other component of the solution (f - frow)
should lie in the nuilspace of the reciprocity and closure matrix R and can be expressed as a linear
combination of basis vectors for the nullspace

- f,_,,) = Nbx (18)
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where N b is the matrix whose columns form that basis and x contains the weights of the linear
combination. However, if there are errors in the computed view factors, f, equations (18) will not be

consistent, and we must resort to the least-squares solution [7]

I,:N.) - :..I

The projection of (f - frow) onto the nullspace, then, is the desired set of corrected view factors

f_)

and the least-squares optimum set of view factors is

f._ =f.. + f...n

(19)

(20)

(21)

When the data are not all equally reliable (usually the case for view factors), weighted least

squares should be used for the solution of equations (18) [7]

f_,_ = Nb(N _ V -l Nb) -1N_" V -1_f - f _,) (22)

where V is the covariance matrix, and

f_ = f_,, + f_ (23)

The view-factor rectifications computed using equations (21) and (23) do not enforce normegativ-

ity.

The least-squares optimum view-factor rectification obtained through equations (21) and (23) are

exactly the same as those which would be obtained by solving the quadric minimization problem in

equations (10), (I 1), and (12) without considering the nonnegativity constraints.

As discussed before the view factors must be normegative to be physically realistic; a negative

view factor is meaningless. It is our opinion and experience that allowing slightly negative values in

the rectified view-factor matrix does not seriously impact the fidelity of the heat transfer results.

Certainly, the strict enforcement of reciprocity and closure has had a much stronger impact on our
results.

A two-step procedure which is easy to implement and closely approximates the results of the

nonlinear-programming solution with the nonnegativity constraints is to apply equations (21) or (23)

and to assume that the equality in equations (13) would be enforced on all negative values. These

view factors are set to zero and removed from consideration obtaining a reduced order problem, and

the process is then repeated with the reduced set of data. This procedure has proven to give exactly
the same set of rectified view factors as the nonlinear-programming solution in about 90% of the

cases and only slightly different ones in the other 10% of the cases.

The rectification algorithm for the least-squares projection is as follows

1) Construct the closure and reciprocity matrix R.

2) Compute the row space component frow using equation (17).
3) Construct the nullspace matrix N. (This can be constructed using standard routines).

4) Compute the nullspace least-squares projection using equation (20) or equation (22) for the
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weighted case.

5) Compute the optimum rectified view factors using equation (21) or (23). View factors fopt

or f_ now satisfy reciprocity and closure.

6) If nonnegativity is enforced, search fopt or fo_t for negative entries, and set these to zero.

7) Remove all zero view factors from consideration. Remove the columns of matrix R
corresponding to each diagonal zero element. For each off-diagonal zero reciprocal pair,

remove the corresponding columns and reciprocity rows from the matrix R. The process is
run a second time starting with step 2 and the reduced set of original view factors.

All of the rectification algorithms presented herein apply reciprocity using the best estimates of

the areas in equation (15) as if the areas were known exactly. This is usually not a serious deficiency

since the areas can usually be determined with low uncertainty. The authors are currently exploring

procedures to properly weight the rectification procedure to account for area variance.

NUMERICAL EXAMPLES

The following problem from the heat transfer text by Incropera and Dewitt [8] is used as a basis

of comparison of the different techniques in this paper.
13.62 A room (Figure 1) is represented by the following enclosure, where the ceiling (1) has

an emissivity of 0.8 and is maintained at 40"C by embedded electrical heating ele-
ments. Heaters are also used to maintain the floor (2) of emissivity 0.9 at 50"C. The

right wall (3) of emissivity 0.7 reaches a temperature of 15"C on a cold, winter day.
The left wall (4) and end walls (5A, 5B) are very well insulated. To simplify the

analysis, treat the two end walls as a single surface (5). Assuming the surfaces are

diffuse-gray, find the net radiation heat transfer from each surface.

(_ _C) r_ "_ _/_

Figure I. Schematic of a Room for the Example Problem.

This problem was the genesis of our interest in the subject of view-factor sensitivity and rectification.

This problem was assigned in the second heat transfer course at Mississippi State University during
the Fall 1992 term. Two students, Miguel and Simon, ignored the simplification and worked the

problem as a six-sided enclosure. Miguel computed his view factors to four-digit accuracy and Simon
to two-digit accuracy; they got radically different answers for the heat fluxes. An analysis of this

problem and the cause for this hypersensivity are discussed in a previous publication (Taylor et al.
[4]).
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Theview-factor matrix computed to four-digit accuracy is

F

0.0 0.394 0.1921 0.1921 0.1109 0.1109"

0.394 0.0 0.1921 0.1921 0.1109 0.1109

0.2881 0.2881 0.0 0.196 0.1139 0.1139

0.2881 0.2881 0.196 0.0 0.1139 0.1139

0.2774 0.2774 0.1898 0.1898 0.0 0.066

0.2774 0.2774 0.1898 0.1898 0.066 0.0

(24)

Seven different numerical experiments have been performed. In each case, the starting point was

the view-factor matrix listed above. Random errors were then introduced by sampling a random-

number generator which produced normally distributed values. The difference in each experiment
resulted from the way that the variance of these random errors was assigned to the view factors. A

thousand view-factor trials were conducted for each case. This was followed by a thousand trials

where the areas were varied randomly. In all of the following, covariance terms are assumed to be

negligible.

Equal Variance

The first numerical experiment considered the view factors to have equal variance with a view-
factor standard deviation of 0.01 and the areas to be fixed. Table 1 gives mean values of the heat

flux for several of the rectification schemes. Since the variances were all equal and the covariances

were assumed to be zero, the weighted least-squares optimum scheme and the unweighted schemes
are identical. The exact solution is computed using the view factors in equation (24) directly. Table

2 shows the standard deviations for the heat flux calculations and the root-mean-square average
standard deviation for each treatment.

Table 1. Mean Heat-Flux Values for Equal View-Factor Variance Case.

Least-Squares
Surface Not N.L.P. No Recti-

Nonneg. Nonneg. Nonneg. Leersum Naive fication Exact

1 -3.6273 -3.6030 -3.6036 -3.6231 -3.6570 -3.9179 -3.6891
2 83.9532 83.7224 83.7249 83.7249 83.9429 83.9205 83.8721
3 -120.4888 -120.1792 -120.1820 -120.4798 -120.3951 -120.3969 -120.5353

Table 2. Standard Deviations in Heat Flux for Equal View-Factor Variance Case.

Least-Squares
Surface Not N.L.P. No Reeti-

Nonneg. Normeg. Nonneg. L_rsum Naive fication

1 0.4374 0.3449 0.3447 0.6364 1.0005 10.2714
2 0.5776 0.4394 0.4398 0.8416 1.5774 11.8809
3 0.7272 0.5138 0.5148 0.9571 2.2777 12.3575

rms-avg 0.5927 0.4382 0.4383 0.8225 1.7007 11.5379
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From Table 1, all of the rectification schemes seem to have means which are roughly equal to the
exact solution. Table 2 shows, however, that there is a large difference in the standard deviations of

the calculated heat fluxes. For surface 1, the case of no rectification has a standard deviation which

is almost an order of magnitude larger than the rectified values. Figure 2 shows histograms of
surface-3 heat-flux distributions for each rectification scheme and for no rectification.

The tables and figure reveal that all of the rectifications are effective for this problem. The

nonnegative least-squares procedures are about twice as effective in reducing errors in the heat flux
calculations as Leersum's rectification which in turn is about twice as effective as the Naive

rectification. Among the least-squares, the nonnegative projection scheme and the nonlinear-

programming scheme yield almost identical results as expected, and the least-squares without

nonnegativity has very slightly larger errors in heat flux than its nonnegative counter parts.
Next, the view factors were set at the values given in equation (24) and the areas were varied

using a standard deviation of 1% for each area. Table 3 gives the standard deviations for the heat-

flux calculations and the rms average standard deviation for each treatment.

Table 3. Standard Deviations in Heat Flux for the Area Variance Case with Equal View-Factor
Variance.

Least-Squares
Surface Not Nonneg. Nonneg. Leersum Naive No Rectification

1 0.4414 0.5132 0.4601 0.2285 4.641
2 0.5281 0.4678 0.4225 0.4928 4.377
3 0.3211 0.3334 0.4915 0.8307 4.461

rms-avg 0.4385 0.4447 0.4586 0.5730 4.794

The table shows that with no rectification the area uncertainties result in considerable uncertainties in

the heat fluxes. However, when the view factors were rectified by enforcing closure and reciprocity
these uncertainties in heat flux are reduced by an order of magnitude. All of the algorithms give

about the same decrease in the sensitivity to area uncertainty for this case study.

Unequal Variance

Six cases were considered which contained unequal variance: 1) diagonal-dominated, 2) counter-

diagonal-dominated, 3) row-dominated, 4) column-dominated, 5) upper-triangle-dominated, and 6)
random variances. Depending on the location of the uncertainties in the view-factor matrix, the

relative success of the rectification schemes with respect to the sensitivity to view-factor uncertainty is

vastly different from that seen for equal variance.
For the diagonal-dominated case-study the view factors along the main diagonal are considered to

have standard deviations which are 100 times as large as the off-diagonal view factors. The standard-

deviation matrix corresponding to the view-factor matrix is
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Figure 2. Histogram of Surface-3 Heat Flux [watts/m 2] for Equal Variance Case.
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(25)

Tables 4 and 5 show the mean and standard deviations of the heat fluxes for 1000 trials where the

view factors in equation (24) were perturbed by values from a gaussian random number generator
with standard deviations given by equation (25).

Table 4. Mean Heat-Flux Values for the Diagonal-Dominated View-Factor Variance Case.

Nonnegative

Least-Squares

Surface Unweighted Weighted Leersum Naive Exact

I -3.4722 -3.6263 -3.4719 -3.6264 -3.6891

2 82.1136 83.8987 83.9797 83.9417 83.9417

3 -117.9622 -120.4087 -120.7616 -120.4729 -120.5353

Table 5. Standard Deviations in Heat Flux for the Diagonal-Dominated View-Factor Variance Case.

Nonnegative

Least-Squares
Surface Unweighted Weighted Leersum Naive

I 1.7256 0.0468 3.5462 0.1029

2 2.3167 0.0623 5.1518 0.1584

3 3.3123 0.0912 6.4956 0.2284

rms-avg 2.5374 0.0693 5.2061 0.1711

The rectification schemes are the unweighted and weighted nonnegative least-squares projection
methods, Leersum's method, and the Naive method. Figure 3 shows histograms for the heat-flux
distributions for surface 3.

For this case study, Leersum's rectification is seen to be the least effective at reducing errors in

the heat flux. The unweighted nonnegative least-squares projection is about twice as effective as

Leersum's scheme, but the weighted nonnegative least-squares projection is an order of magnitude
more effective. For this case, the Naive rectification is almost as good as the weighted least-squares

projection.

Recall that the Naive rectification scheme lumps all of the corrections into the diagonal elements
for closure enforcement while Leersum's scheme evenly distributes the corrections over all of the

nonzero values. Therefore, when the view factor variance is mostly along the diagonal, we expect
the Naive scheme to perform well and Leersum's to not perform well. When the variances are all

equal, Leersum's is expected to perform well, as it did in the previous case study.
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Figure 3. Histograms of Surface-3 Heat Flux [watts/m 2] for the Diagonal-Dominated Case.

Figure 3 shows that there is a considerable skew to the heat flux distributions for the nonnegative

least-squares cases. It is believed that this is caused by the nonnegativity constraints. The diagonal
elements of the view-factor matrix have nominal values which are zero; therefore, the Monte-Carlo

procedure will produce many negative diagonal view factors that are then set to zero.
For the area uncertainties, a random perturbation is added to the view-factor matrix using a

gaussian random-number generator with the standard deviations given above. The F-matrix is then

frozen and the Monte-Carlo analysis is performed for the area uncertainties using a gaussian random-

number generator and area standard deviations equal to 1% of each area. Table 6 shows the standard
deviations for the resulting heat-flux calculations.
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Table 6. Standard Deviations in Heat Flux for Area Variance with Diagonal-Dominated View-Factor

Error.

Nonnegative

Least-Squares
Surface Unweighted Weighted Leersum Naive

1 0.4462 0.3718 0.4197 0.2298

2 0.5079 0.5679 0.3978 0.4840

3 0.3160 0.4742 0.5208 0.8534

rms-avg 0.4309 0.4781 0.4493 0.5818

As seen above, all of the rectification schemes have about the same effect on sensitivity to area

uncertainty.

The same procedure is followed for the other unequal variance case studies. For all of the cases

with regional dominance, the base view-factor standard deviation is 0.001, and the value in the

dominate region is 0.1. For the counter-diagonal-dominated case, the larger values of standard

deviation are obviously along the counter diagonal. For the row-dominated and column-dominated

cases, the larger values are on the second row and second column respectively. For the upper-

triangle-dominated case, the six elements in the upper-right corner have the larger values. For the

random-variance case, the standard deviations were assigned randomly in the range 0-0.1.

Table 7 shows the mean heat flux values, and Table 8 shows the standard deviations of the heat

fluxes for the various I000 trial Monte-Carlo studies. The tables reveal that the weighted nonnegative

Table 7. Mean Heat-Flux Values for the Other Unequal View-Factor Variance Cases.

Nonnegative

Least-Squares

Surface Unweighted Weighted Leersum Naive Exact

Counte_Diagonal-DominatedView-Factor Varance
1 -3.5645 -3.6229 -3.4449 -3.1886 -3.6891

2 82.2329 83.9206 83.0833 83.8364 83.8721

3 -119.5026 -120.4466 -120.4577 -120.4717 -120.5353

Row-Dominated View-Factor Variance

1 -2.7005 -3.6096 -2.6789 -1.7829 -3.6891
2 82.0741 83.9014 81.9244 79.4481 83.8721

3 -119.0604 -120.4378 -118.8689 -116.4979 -120.5353

Column-DominatedView-Factor Variance

1 -2.6462 -3.6033 -3.7737 -3.5184 -3.6891

2 81.8186 83.8880 83.7971 83.8305 83.8721

3 -118.7586 -120.4271 -120.0350 -120.4682 -120.5353

Upper-Tnangle-DominatedView-Factor Variance
1 -3.5754 -3.6222 -3.3351 -3.3087 -3.6891

2 83.6157 83.9198 82.6190 80.2599 83.8721

3 -120.0605 -120.4450 -118.9259 -115.4267 -120.5353

Random View-Factor Variance

1 -3.2880 -3.2593 -3.3021 -2.0925 -3.6891

2 82.4014 82.7955 82.8567 80.3335 83.8721

3 -118.6701 -119.3044 -119.3318 -117.3613 -120.5353
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least-squaresprojection scheme is vastly superior to the others. Overall its mean heat fluxes most

closely agree with the exact values, and with the exception of the random-variance case, its standard

deviation is one to four orders of magnitude smaller than those for the other schemes. For the

random-variance case, the weighted least-squares scheme gives the best results, but the unweighted

least-squares and Leersum's schemes also give good results since the uncertainties are more-or-less

evenly distributed.

For some cases, the naive rectification scheme fails completely. Table 9 gives the range of

computed heat fluxes for the naive rectification with the upper-triangle-dominated view-factor

uncertainties. Clearly, any single heat-flux computation from this set is meaningless.

It should be noted that this is a terribly damaged view-factor matrix. For this case, the 95%-

confidence uncertainty in view factor is approximately 0.1, or the view factors are considered to have

approximately 1 digit accuracy. This would correspond to very crudely computed view factors.

However, properly rectified cases yield very meaningful heat flux computations.

Table 10 gives the rms averaged heat flux standard deviations for the area uncertainty Monte-

Carlo analysis. As seen before, all of the rectification schemes seem equally good at reducing the

sensitivity of the heat flux calculations to the uncertainties in the areas for this case study.

Table 8. Standard Deviations in Heat Flux for the Other Unequal View-Factor Variance Cases.

Nonnegative
_t-Squares

Surface Unweighted Weighted Leersum Naive

Counter-Diagonal-Dominated View-Factor Variance
1 0.5277 0.0368 1.4061 3.4348

2 0.6197 0.0460 2.0133 5.2123

3 0.8957 0.0563 1.6163 6.2030

rms-avg 0.6988 0.0470 1.6973 5.0810

Row-Dominated View-Factor Variance

1 1.7794 0.0477 3.6299 5.4372

2 2.7123 0.0630 7.0196 16.1912

3 2.5028 0.0618 5.8428 19.2367

rms-avg 2.3655 0.0579 5.6742 14.8523

Column-Dominated View-Factor Variance

1 1.9819 0.0550 3.9047 5.1064

2 3.5176 0.0819 4.8266 5.2548

3 3.4125 0.0701 3.9496 0.3175

rms-avg 3.0521 0.0699 4.2482 4.2343

Upper-Triangle-Dominated View-Factor Variance

1 0.2454 0.0353 2.0937 11.0725

2 0.3273 0.0438 1.9262 22.9427

3 0.4017 0.0535 2.2979 43.0558

rms-avg 0.3310 0.0448 2.1114 28.8835

Random View-Factor Variance

1 2.6444 2.0461 4.7752 14.7834

2 2.6682 2.0091 6.1736 17.8497

3 2.4439 1.7696 5.3161 15.3694

rms-avg 2.5875 1.9454 5.4521 16.0560
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Table 9. Range of Naive Heat-Flux Values for the Upper-Triangle-Dominated Variance Case.

Surface 1 2 3

max 38.9123 106.9031 991.5615
mean -3.3087 80.2599 -115.4267
min -281.7724 -389.7757 -205.6421

Table I0. Root-Mean-Square Averaged Standard Deviations in Heat Flux for Area Variance Cases
with Other Unequal View-Factor Variance.

View-Factor Variance Case

Nonnegative
Least-Squares

Unweighted Weighted Leersum Naive

Counter-Diagonal 0.4397 0.4395 0.4605 0.5556
Row-Dominated 0.3916 0.4721 0.3570 0.4075
Column-Dominated 0.4071 0.4461 0.4417 0.5859
Upper-Triangle 0.4386 0.4432 0.4748 0.5556
Random 0.4243 0.4565 0.4355 0.5734

CONCLUSIONS

Several view-factor rectification schemes have been compared. Figure 4 summarizes the rms-

averaged standard deviation results for heat flux when view-factor uncertainty is considered. The
Naive scheme, where all of the corrections are placed in the diagonal elements of the view-factor

matrix, has proven to be erratic and sometimes results in meaningless calculations. Leersum's

iterative scheme is also erratic but, on average gives considerably better results than the Naive

scheme. Leersum's scheme is most viable when the view factors have equal variance. The

unweighted version of the normegative least-squares projection scheme is better behaved than either

the Naive or Leersum's scheme; however, when the view-factor variance is not equally distributed,
the unweighted nonnegative least-squares projection is consistently superior for all cases. In the eases

where the variances were not equally distributed the weighted nonnegative least-squares projection
gives heat-flux results which were orders of magnitude better than the other schemes.

The Naive scheme is not recommended. If no knowledge on the relative sizes of the view-factor

variances is available, either Leersum's scheme or the unweighted nonnegative least-squares

projection will take fairly crudely calculated view factors and compute meaningful heat transfer

results. The least-squares projection is recommended since the computational tasks are roughly
equivalent and it is about twice as effective. If information is available on the relative variance of the

view factors (which is always the case for Monte-Carlo integrations), the weighted nonnegative least-
squares projection should be used.

The weighted nonnegative least-squares projection can be thought of as a numerical filter for

noisy view-factor data. In the examples given here, very good heat transfer calculations were made

for cases with very crudely defined view-factor data (roughly 1 digit accuracy). View-factor

calculations are the most computationally intensive part of many radiation enclosure problems. There

is the possibility of considerable improvement in computational efficiency by combining this excellent

filter with relatively crude computations of the view factor values. To properly make such a

compromise, sensitivity estimates [5] of the heat transfer calculations would be required.
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Summary of Surface-3 Standard Deviation Results for View-Factor Variance.

All of the schemes were roughly equal with regards to the propagation of uncertainties in the

surface areas. When the view factors were rectified in this case study, the heat flux uncertainties

were roughly an order of magnitude less than the case when no rectification was applied. The proper

weighting procedure for the enforcement of reciprocity with uncertain areas is a topic of current
research.
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